Our guess is that within this domain, groups and sets become systems.
49 50 51 ←Steps→ 52 53 54
3.03508889×10-29s 6.0701777×10-29s 1.2140355×10-28s T(seconds) 2.4280711×10-28s 4.8561422×10-28s 9.7122844×10-28s
9.098396×10-21m 1.819679×10-20m 3.639358×10-20m L(meters) 7.278717×10-20m 1.455743×10-19m 2.91148×10-19m
1.225266×107kg 2.450532×107kg 4.901064×107kg M(kilograms) 9.802129×107kg 1.960425×108kg 3.920851×108kg
1.055866×10-3C 2.111733×10-3C 4.223466×10-3C C(Coulombs) 8.44693×10-3C 1.68938×10-2C 3.37877×10-2C
1.2408×10-12K 2.48175×10-12K 4.9635×10-12K T(Kelvin) 9.9270×10-12K 1.98540×10-11K 3.97081×10-11K
1.4073749×1014 2.8147498×1014 5.6294995×1014 B2Vertices 1.1258999×1015 2.2517998×1015 4.5035996×1015
1.7840596×1044 1.4272477×1045 1.1417982×1046 ScalingV 9.1343852×1046 7.3075082×1047 5.8460065×1048
299,773,625.411 299,773,596.41 299,773,606.291 Light m/sec 299,773,635.13 299,773,565.1 299,773,070.79
Notations 50 to 60: Reader warning – very rough draft! There are several fascinating articles about consciousness and the brain-mind relation [1] [2]. We know that we live within the 201 notation, 13.8 billion years from the first seconds of creation. Yet, we also know that there are multiples of the Planck length were things like particles and sub-particles could or should manifest and that these particles and sub-particles can be measured and their qualities understood. It would seem that each notation in which an entity can be first measured, and where there are the necessary relations above it and below it to create the groups and sets that make an entity manifest uniquely. These notations are a long way from current time. So, although specific notations are where entities manifest, everything must “transcend time” to be integrated as a whole within the 201 notation. Or, time is discrete, and all notations are always available to us. Each space/time (length) ratio exists uniquely, and long after it is first manifest for the first time, it continues to manifest dependent on all manifestations throughout the subsequent notations and on all prior notations.

In this context, the mind is hypostatized (imputed) to manifest within the “Systems” group which is also hypostatized to be between the 50th to 60th notations. In that context, we are now re-reading papers like [1] Mathematical Foundations of Consciousness, Willard L. Miranker and Gregg J. Zuckerman, Department of Computer Science and Mathematics, Yale University, 23 Oct 2008 and [2] The Simplest Mathematical Model of Consciousness, Roderick Wallace, New York State Psychiatric Institute, September 2, 2014.

Continued Discussion about Mass and kilograms::
49. 12,252,662.00576
50. 24,505,324.01152
51. 49,010,648.02304
52. 98,021,296.04608
53. 196,042,592.09216 is over 432,199,933 pounds
54. 392,085,184.18432 (864,399,866 lbs)

Key questions about order, relations and dynamics:
Even at the 54th notation, the other Planck base unit multiples are still infinitesimally small. We still have much to learn before we can begin postulating something special about each unit and their functions within each container, cluster, domain, doubling, group, layer, notation, set and/or step.

Notations, Exponentiations, Vertex Counts for B2 and Scaling Vertices: From notations 49 to 54 the actual number of vertices is stored in its own page which can be accessed by clicking here.

Thoughts On The Variable Speed of Light Calculations: Using Notation #53 as our example, six decimals divided by six decimals equals 299,773,565.1. By using the seventh decimal within time, the new calculation is 299,773,552.76. Using #54, with seven decimals, it is 299,772,934.98. With six it is 299,772,947.33. And with five, matching the value within the space unit, is: 299,773,070.79. That could explain some of the variances, however, it does not explain the variances between notations.

Throughout the 54 notations, the highest calculation as 299,982,157 (#16) and the lowest (#3) is 299,790,300.  The speed of light in a vacuum is 299,792,458.  We might argue for a variable speed of light. At some point, we will average all speeds.  From a cursory glance at the data, it appears that the figure will be higher than the experimental value measured in the laboratory.  We might also discover that the range is always within 10% of our statistical average.  Of course, we will be studying these variations and their calculations more closely.