193-198

Notations 193 to 198 of 200+
The billion year container is between notation 199 and 200.
193 194 195 <-Steps->
196 197 198
338,423,718,896,000.s 676,847,437,792,000.s 1,353,694,875,580,000.s T(seconds) 2,707,389,751,160,000.s 5,414,779,502,320,000.s 10,829,559,004,600,000.s
2.029×1023.km 4.058×1023.km 8.116×1023.km L(meters) 1.623×1024.km 3.246×1022.km 6.492×1023.km
2.732×1049kg 5.464×1049kg 1.092×1050kg M(kilograms) 2.185×1050kg 4.371×1050kg 8.743×1050kg
2.354×1040C 4.709×1040C 9.418×1040C C(Coulombs) 1.883×1041C 3.767×1041C 7.534×1041C
2.767×1029 K 5.534×1029 K 1.106×1030 K T(Kelvin) 2.213×1030 K 4.427×1030 K 8.885×1030 K
3.138×1057 6.277×1057 1.255×1058 B2Vertices 2.5108×1058 5.021×1058 1.004×1059
1.266×10176 1.013×10177 8.104×10177 ScalingV 6.483×10178 5.188×10179 4.149×10180
Discussion: The Fullness of Time: On the approach to the first billion years of the universe, it is within these six notations that the universe as we experience it begins. There are 31,556,926,000,000,000 seconds in an eon that is a billion years, between notations 199 and 200.

Key questions about order, relations and dynamics:

Notation, Exponentiation, Vertex Counts for B2 and Scaling Vertices: From notations 169 to 200+ the actual number of vertices will be stored in its own page which can be accessed by clicking here.

Advertisements

175-180

Notations 175 to 180 of 200+
1000 Years, a millennium, is between notation 178 and 179.
175 176 177 <-Steps->
178 179 180
2,581,968,070.s 5,163,936,140.s 10,327,872,280.8.s T(seconds) 20,655,744,561.s 41,311,489,123.s 82,622,978,246.s
7.7400×1017.km 1.548×1018.km 3.096×1018.km L(meters) 6.192×1018.km 1.238×1019.km 2.476×1019.km
1.042×1044kg 2.084×1044kg 4.169×1044kg M(kilograms) 8.338×1044kg 1.667×1045kg 3.335×1045kg
8.982×1034C 1.796×1035C 3.592×1035C C(Coulombs) 7.185×1035C 1.437×1036C 2.874×1036C
1.055×1024 K 2.111×1024 K 4.222×1024 K T(Kelvin) 8.444×1024 K 1.688×1025 K 3.377×1025 K
1.1972×1052 2.3945×1052 4.789×1052 B2Vertices 9.578×1052 1.915×1053 3.831×1053
8.786×10158 7.029×10159 5.623×10160 ScalingV 4.498×10161 3.599×10162 2.879×10163
Discussion: The First 1000 Years: There are 31,556,952 seconds in a year and 31,556,952,000 seconds in a millennium which is between notations 178 and 179.

Key questions about order, relations and dynamics:

Notation, Exponentiation, Vertex Counts for B2 and Scaling Vertices: From notations 169 to 200+ the actual number of vertices will be stored in its own page which can be accessed by clicking here.

169-174

Notations 169 to 174 of 200+
The First Year and the definition of “Yearness” is within notation 169.
169 170 171 <-Steps->
172 173 174
40,343,251.097.s 80,686,502.194.s 161,373,004.388.s T(seconds) 322,746,008.7.s 645,492,017.5.s 1,290,984,035.s
1.2093×1016.km 2.4187×1016.km 4.8375×1016.km L(meters) 9.675×1016.km 1.935×1017.km 3.87×1017.km
1.628×1042kg 3.257×1042kg 6.514×1042kg M(kilograms) 1.302×1043kg 2.605×1043kg 5.211×1043kg
1.403×1033C 2.80×1033C 5.613×1033C C(Coulombs) 1.122×1034C 2.245×1034C 4.491×1034C
1.649×1022 K 3.298×1022 K 6.597×1022 K T(Kelvin) 1.319×1023 K 2.63×1023 K 5.278×1023 K
1.8707×1050 3.7414×1050 7.4828×1050 B2Vertices 1.4965×1051 2.993×1051 5.986×1051
4.1899×10152 3.3519×10153 2.6815×10154 ScalingV 2.145×10155 1.716×10156 1.372×10157
Discussion: The First Year: Using a year of 365.2425 days and 86,400 seconds per day, there are 31,556,952 seconds per year. A year, when multiplied by the speed of light, 299,792,458 m/s equals a length of 9,460,536,207,068,016 meters or 9,460,536,207,068.016 km, between the 168th and the 169th notations.

Key questions about order, relations and dynamics:

Notation, Exponentiation, Vertex Counts for B2 and Scaling Vertices: From notations 169 to 200+ the actual number of vertices will be stored in its own page which can be accessed by clicking here.

163-168

Notations 163 to 168 of 200+
The first month is within notation 165. The first year begins on the edge of 168 as it become 169.
163 164 165 <-Steps->
166 167 168
630,363.29.s 1,260,726.59.s 2,521,453.19.s T(seconds) 5,042,906.38.s 10,085,812.77.s 20,171,625.54.s
1.88966306×1014.km 3.779×1014.km 7.558×1014.km L(meters) 1.511×1015.km 3.023×1015.km 6.046×1015.km
2.544×1040kg 5.089×1040kg 1.0179×1041kg M(kilograms) 2.035×1041kg 4.071×1041kg 8.143×1042kg
2.192×1031C 4.385×1031C 8.771×1031C C(Coulombs) 1.754×1032C 3.508×1032C 7.017×1032C
2.5772×1020 K 5.1544×1020 K 1.030×1021 K T(Kelvin) 2.061×1021 K 4.123×1021 K 8.247×1021 K
2.923×1048 5.846×1048 1.169×1049 B2Vertices 2.338×1049 4.6768×1049 9.353×1049
1.598×10147 1.278×10148 1.022×10149 ScalingV 8.1834×10149 2.497×10150 6.5467×10151
Discussion: The First Month: Use 30.436875 days per month based on a year of 365.2425 days divided by 12 months; Given there are 86,400 seconds per day, there are 2,629,746 seconds per month. It is within the notation 165. Multiplied by 299,792,458 m/s equals a length of 777,062,051,136,000 meters or 777,062,051,136 km, a little larger than the 165th notation.

There are 31,556,952,000 seconds to a millennium which is found between notations 177 and 178.

Key questions about order, relations and dynamics:

Vertex Counts for B2 and Scaling: From notations 139 to 200+ the actual number of vertices will be stored in its own page which can be accessed by clicking here.

139-144

Notations 139 to 144 of 200+
The first second of creation completes between notations 142 and 143.
139 140 141 <-Steps->
142 143 144
3.7572×10-2.s 7.5145×10-2.s .15029×10.s T(seconds) .30058.s .60116.s 1.2023.s
11,263.2699.km 22,526.5398.km 45,053.079.km L(meters) 90,106.158.km 180,212.316.km 360,424.632.km
1.5168×1033kg 3.0336×1033kg 6.0672×1033kg M(kilograms) 1.2134×1034kg 2.4268×1034kg 4.8537×1034kg
1.3070×1024C 2.6141×1024C 5.2283×1024C C(Coulombs) 1.0456×1025C 2.0913×1025C 4.1827×1025C
1.5361×1013 K 3.0722×1013 K 6.1445×1013 K T(Kelvin) 1.2289×1014 K 2.4578×1014 K 4.9156×1014 K
1.74224×1041 3.4844×1041 6.96898×1041 B2Vertices 1.3937×1042 2.78759×1042 5.57518×1042
3.3846×10125 2.7076×10126 2.1661×10127 ScalingV 1.73291×10128 1.38634×10129 1.109×10130
Discussion: All these notations are still being double checked and cross referenced to the other three key charts. We will correct simple math errors as quickly as possible.

One minute and one hour of creation should be noted. The figures at one day (Notation 160), one week, one month, one year, one millennium and one eon (1 billion years) are all important clues to interpret the meaning of each notation.

Key questions about order, relations and dynamics: Is there a formula that begins to bind all notations deeper than exponentiation? Can the speed of light do it?

Formula #1

We start with a most simple formula. Divide each value along the Planck Length scale by its corresponding value along the Planck Time, the result should equal the speed of light (kilometers per second) at every one of the 201 notations.

Let’s see if the logic bears out. First, we will use the closest possible Planck Time and Planck Length multiples to one second, .6011 seconds and 1.202 seconds at notations 143 and 144 respectively.

The first simple calculation: The simple formula is to divided 180,212.316 kilometers by 6.011 seconds. That calculation gives us a figure of 299,804.05257 km/second.

Dividing 360424.632 kilometers by 1.202 seconds gives us a figure of 299,854.103161 km/second. The experimentally defined measurement for one light second is 299,792.458 km per second.

When using a more refined measurement, the results naturally change. Using a calculation based on the ratio of 1.20232257536 seconds to 360424.632 kilometers renders a figure of 299,773.654248 km/second. We’ll have to be careful to test with an equal number of decimal units for time and length.

Every notation has its own calculation for the speed of light. We will do the calculations for several notations to see if it tells us something of interest.

At 142nd notation, .300580643 divided by 90,106.158 equals 299,773.655085 and at notation 145, the ratio 2.404645 to 720,849.264 renders 299,773.673037 and at notation 146, the ratio is 4.80929 seconds to 1,441,698.55 km equals 299,773.677611 km per second.

How about 150 and 100?

At 100th notation, the length is 20.4877678 microns divided by 6.83441261472×10-14 seconds equals 299,773.644861 km/second. At 150th notation, 23,067,176.8 km divided by 76.948644823 seconds equals 299,773.658822 km/second.

Analysis: Of course, it is not at all surprising that the Planck Time, Planck Length, and the speed of light correlate throughout the chart given that both Planck Time and Planck Length are determined by the speed of light.

What is surprising is that this simple formula corroborates the basic integrity of the chart, base-2 exponentiation with the speed of light, and it all begs for further analysis.

We will do it. We will go back through all 204 notations and do the calculations using numbers extended to the ten-thousandths and we’ll report the results within each notation.

Let us now find Formula #2.

Link to Vertex Counts for B2 and Scaling: From notations 139 to 200+ the actual number of vertices will be stored in its own page which can be accessed by clicking here. These vertices open the discussions about the inherent geometry that should permeate this chart.

109-114

Notations 109 to 114 of 200+
Now all the elements of human life have a container.
109 110 111 <-Steps->
112 113 114
3.4992×10-11.s 6.9984×10-11.s 1.3996×10-10.s T(seconds) 2.7993×10-10.s 5.5987×10-10.s 1.1197×10-9.s
5.2448.millimeters 1.048.centimeters 2.097.cm L(meters) 4.1958 cm 8.3917 cm 16.7835 mm
1.41263×1024kg 2.82527×1024kg 5.6505×1024kg M(kilograms) 1.1301×1025kg 2.2602×1025kg 4.5204×1025kg
1.2173×1015C 2.4346×1015C 4.8693×1015C C(Coulombs) 9.7386×1015C 1.9477×1016C 3.8954×1016C
1.4306×104 K 2.4346×104 K 5.7225×104 K T(Kelvin) 1.1445×105 K 2.2890×105 K 4.5780×105 K
1.6225×1032 3.24518×1032 6.4903×1032 B2Vertices 1.2980×1033 2.5961×1033 5.1922×1033
2.73406×1098 2.1872×1099 1.7498×10100 ScalingV 1.3998×10101 1.1198×10102 8.9589×10102
Discussion:
Key questions about order, relations and dynamics: cluster, domain, doubling, group, layer, notation, set and/or step
Notes and references: Temporary records
Exact Base-2 vertices – ( 81129638414606681695789005144064 ), 162259276829213363391578010288128, 324518553658426726783156020576256, 649037107316853453566312041152512, 1298074214633706907132624082305024,
2596148429267413814265248164610048, 5192296858534827628530496329220096,Base-8 vertices:
( 34175792574734561318320347298712833833643272357706444319152665725155515612490248800367393390985216 ) 273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881728, 2187250724783011924372502227117621365353169430893212436425770606409952999199375923223513177023053824,
17498005798264095394980017816940970922825355447145699491406164851279623993595007385788105416184430592, 139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444736, 1119872371088902105278721140284222139060822748617324767449994550481895935590080472690438746635803557888, 8958978968711216842229769122273777112486581988938598139599956403855167484720643781523509973086428463104,

79-84

RightarrowSmallGreenNotations 79 to 84 of 200+
Containers for all the elements of the Periodic Table begin to manifest.
79 80 81 <-Steps->
82 83 84
3.2589×10-20s 6.5178×10-20s 1.30356×10-19s T(seconds) 2.6071×10-19s 5.2142×10-19s 1.0428×10-18s
4.8846×10-12m 9.7693×10-12m 1.9538×10-11m L(meters) 3.9077×10-11m 7.8154×10-11m 1.5630×10-10m
1.3156×1016kg 2.6312×1016kg 5.2624×1016kg M(kilograms) 1.0524×1017kg 2.1049×1017kg 4.20998×1017kg
1.1337×106C 2.2674×106C 4.5349×106C C(Coulombs) 9.0698×106C 1.8139×107C 3.6279×108C
1.33238×10-3K 2.66476×10-3K 5.32953×10-3K T(Kelvin) 1.0659×10-2K 2.1318×10-2K 4.2636×10-2K
1.51115×1023 3.0223×1023 6.0446×1023 B2Vertices 1.20892×1024 2.41785×1024 4.83570×1024
2.2085×1071 1.7668×1072 1.4134×1073 ScalingV 1.1307×1074 9.046×1074 7.237×1075
Discussion: The first moment of measurable time will come up within Notation 87.
Key questions about order, relations and dynamics: cluster, domain, doubling, group, layer, notation, set and/or step
Notes and references: Temporary records
Exact Base-2 vertices – (75557863725914323419136), 151115727451828646838272, 302231454903657293676544, 604462909807314587353088, 1208925819614629174706176, 2417851639229258349412352, 4835703278458516698824704
Base-8 vertices: (27606985387162255149739023449108101809804435888681546220650096895197184 OR 2.7606×1070),
220855883097298041197912187592864814478435487109452369765200775161577472, 1766847064778384329583297500742918515827483896875618958121606201292619776, 14134776518227074636666380005943348126619871175004951664972849610340958208, 113078212145816597093331040047546785012958969400039613319782796882727665664, 904625697166532776746648320380374280103671755200316906558262375061821325312, 7237005577332262213973186563042994240829374041602535252466099000494570602496